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Deriving quantitative structure-activity relationship (QSAR) models that are accurate, reliable,
and easily interpretable is a difficult task. In this study, two new methods have been developed
that aim to find useful QSAR models that represent an appropriate balance between model
accuracy and complexity. Both methods are based on genetic programming (GP). The first
method, referred to as genetic QSAR (or GPQSAR), uses a penalty function to control model
complexity. GPQSAR is designed to derive a single linear model that represents an appropriate
balance between the variance and the number of descriptors selected for the model. The second
method, referred to as multiobjective genetic QSAR (MoQSAR), is based on multiobjective GP
and represents a new way of thinking of QSAR. Specifically, QSAR is considered as a
multiobjective optimization problem that comprises a number of competitive objectives. Typical
objectives include model fitting, the total number of terms, and the occurrence of nonlinear
terms. MoQSAR results in a family of equivalent QSAR models where each QSAR represents
a different tradeoff in the objectives. A practical consideration often overlooked in QSAR studies
is the need for the model to promote an understanding of the biochemical response under
investigation. To accomplish this, chemically intuitive descriptors are needed but do not always
give rise to statistically robust models. This problem is addressed by the addition of a further
objective, called chemical desirability, that aims to reward models that consist of descriptors
that are easily interpretable by chemists. GPQSAR and MoQSAR have been tested on various
data sets including the Selwood data set and two different solubility data sets. The study
demonstrates that the MoQSAR method is able to find models that are at least as good as
models derived using standard statistical approaches and also yields models that allow a
medicinal chemist to trade statistical robustness for chemical interpretability.

Introduction

Quantitative structure-activity relationships (QSARs)
attempt to relate a numerical description of molecular
structure to known biological activity. Hansch pioneered
the approach by demonstrating that biological activity
could be correlated to a few simple thermodynamic or
electronic variables using a simple regression equation.
Since this first analysis, two significant developments
have been made.1 The first is that a wide range of easily
computable molecular descriptors is now available, and
the second is that many sophisticated techniques have
emerged that are a significant improvement over the
original linear regression analysis.

Despite the developments that have taken place in
QSAR, deriving models that are accurate, reliable, and
easily interpretable remains a difficult task. While the
availability of large numbers of easily computable
descriptors such as topological indices, substructural

keys, and two-dimensional (2D) and three-dimensional
(3D) fingerprints can help in providing a variety of
different ways of describing structures, it can also make
the task of deriving accurate and easily interpretable
QSAR models harder. Complexity in QSAR can be due
to a number of different factors including the number
of terms included, the mathematical operators and
functions used to combine the terms, the inclusion of
nonlinear and cross-terms, and the inclusion of descrip-
tors that are hard to interpret. Often these factors
conflict with model accuracy, with more accurate models
tending to be more complex and hence harder to
interpret and vice versa.

When there are more descriptors available than data
points, the use of inappropriate analysis methods can
lead to overfitting of the data with the generation of
models that have poor predictive ability. In these cases,
the number of descriptors should be reduced in order
to develop a model that is predictive and easier to
interpret. A systematic search for the best subset of
features is generally not possible since there are a total
of 2N - 1 possible subsets of features for a data set
consisting of N descriptors. For example, as McFarland
and Gans2 have noted, there are 9 × 1015 possible
combinations of descriptors for the well-known Selwood
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data set3 that is typically characterized by 53 descrip-
tors. The computational cost associated with feature
selection has resulted in a number of different algo-
rithms being developed for feature selection and QSAR
generation, such as principal component analysis,4
nonlinear mapping,5 partial least squares,6 neural
networks,7 and evolutionary algorithms.8

The Selwood data set has been well-studied in QSAR
and has become a standard against which new methods
are tested. Selwood’s3 initial approach involved using
forward-stepping multivariate regression analysis to
obtain a three descriptor model. However, the stepwise
nature of this procedure fails to take into account any
coupled effects between the descriptors, and subse-
quently, Wikel and Dow7 derived an improved three
descriptor model using a neural network as the descrip-
tor selection method.

Rogers and Hopfinger developed the genetic function
approximation (GFA)9 method where descriptor selec-
tion is performed using a genetic algorithm (GA) and
QSAR models are obtained by performing least squares
regression to regenerate the coefficients. The models are
scored using Friedman’s lack of fit (LOF) measure,
which is based on the least squares error combined with
a user definable smoothing parameter that penalizes the
effect of including additional terms in a model. They
found improved three descriptor models in addition to
good two and four descriptor models. Reducing the
smoothing parameter led to 4-6 descriptor models with
modest improvements in prediction, estimated using
cross-validation.

The mutation and selection uncover models (MU-
SEUM) algorithm10,11 developed by Kubinyi is based on
an evolutionary algorithm involving mutation only (that
is, there is no crossover operator). It avoids the need
for a user-defined parameter by using the FIT value as
the fitness criterion. The FIT value is based on the
Fischer significance value adjusted with respect to the
number of independent variables selected in each model.
In the related evolutionary programming (EP) method
developed by Luke,8 fitness is defined using a three term
function. The first term is the root mean square (RMS)
between predicted and measured values, the second
term is used to drive the solution toward a given number
of descriptors, and the final term is used to weight the
descriptors according to their exponent values; for
example, quadratic terms are penalized relative to
linear terms. Both Kubinyi’s and Luke’s methods were
able to find three descriptor models that had not been
found previously.

The previous methods are limited to finding linear
models. So and Karplus12 developed a hybrid method
that combines a GA for descriptor selection with an
artificial neural network for model building. They found
improved models for the Selwood data set where the
improvement appears to be due to the selection of
nonlinear descriptors. The neural network was able to
explore nonlinear relationships without the need to
examine each possible nonlinearity. More recently, a
novel algorithm based on the fast random elimination
of descriptors (FRED)13 has been proposed that was able
to find the same solutions for the Selwood data sets as
the previous methods.

We have developed two approaches to deriving QSARs
that seek to balance model accuracy with complexity.
Both approaches are based on genetic programming
(GP). In the first, the balance between the accuracy and
the number of terms in the model is controlled via the
use of a penalty function. The second approach is based
on a multiobjective GP (MOGP) method in which a
family of equivalent models is found, where each model
represents one particular compromise between accuracy
and complexity. In the latter approach, several objec-
tives are used to control complexity including the
number of terms, the number of nonlinear terms, and
a knowledge-based objective that is able to drive the
solutions toward descriptors that are easily interpret-
able. The method is able to find models that are at least
as good as models derived using standard statistical
approaches and also yields models that allow a medici-
nal chemist to trade statistical robustness for chemical
interpretability. In the following section, we give a brief
overview of GP before describing the approaches that
we have developed.

Computational Methods

GP. GP14 is a branch of GAs and is based on the
principles of Darwinian evolution and survival of the
fittest. The main difference between GP and GAs is the
representation of potential solutions. In GAs, an indi-
vidual is usually represented as a fixed length linear
string. In GP, however, an individual is represented as
a tree, which can vary in shape and size as the
population undergoes evolution. Thus, the complexity
of the representation is increased relative to a GA. GP
was originally developed to evolve computer programs,
or mathematical expressions, where an individual is
represented as a parse tree. The internal nodes of the
tree represent mathematical operators or mathematical
functions, and the terminal nodes represent variables
or constant values. An individual is evaluated by
converting the tree into the corresponding mathematical
expression. The process is illustrated in Figure 1 where
the internal nodes are mathematical functions and the
terminal nodes are molecular descriptors.

GP has been applied to many problems such as
automated design, pattern recognition, robot control,
symbolic regression, music generation, image compres-
sion, and image analysis. Despite the widespread ap-
plication of GAs to problems in computer-aided molec-
ular design15 such as ligand docking, pharmacophore
detection, and variable selection in QSAR, the applica-
tions of GP in the field have been more limited.
Examples include the use of GP to evolve molecules to

Figure 1. Example of the tree representation used in GP
together with the decoded mathematical expression that it
represents.
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fit a QSAR or quantitative structure-property relation-
ship (QSPR)16 and the use of GP to design molecules
based on 2D similarity to a target compound.17 Both of
these examples exploit the relationship between 2D
chemical structures and graph theory where the GP
manipulates the structures directly.

GP begins with the definition of a set of functions and
terminals that are appropriate for the domain. An initial
population of trees is then generated consisting of
random compositions of nodes. Each tree represents a
mathematical expression, or computer program, and the
fitness function consists of executing the computer
program and assigning a fitness value according to how
well it solves the problem in question. GP then enters
an iterative cycle where in each iteration a new popula-
tion is generated by applying the genetic operators
reproduction, mutation, and crossover.

Each of the genetic operators involves the selection
of one or more parent chromosomes where the prob-
ability of a chromosome being selected is proportional
to its fitness. The reproduction operator involves select-
ing one parent chromosome, which is copied unchanged
into the next generation. In mutation, a single parent
is selected and a mutation point is chosen at random.
The subtree at the mutation point is deleted, and a new
subtree is grown. In crossover, two parents are selected,
which are usually of different shape and size, a cross-
over point is chosen at random in each parent, and
subtrees are exchanged. Crossover is the predominant
operator in GP and is performed with a high probability
relative to mutation and reproduction. The iterations
continue until some convergence criterion has been
reached when the best solution found is designated to
be the result of the GP.

Applying GP to QSAR. QSAR is a regression
problem where an attempt is made to relate a numerical
description of molecular structure or properties to a
known biological activity. An example QSAR model is
shown in eq 1

where ypred is the predicted or calculated activity; xi
represents the variables or molecular descriptors used
in the model; a, b, and c are coefficients; and d is a
constant.

GP can be used to solve this problem by defining the
function set to be a set of mathematical operators, for
example, F ) {+, -, *, sin, cos, exp, log}, and the
terminal set to be the independent variables and the
coefficients and constants. The fitness function then
involves converting the tree representation into the
corresponding mathematical expression, applying the
model to the known data points, and measuring how
well it is able to predict the known activities.

A GP approach to deriving QSAR has been imple-
mented in the program GPQSAR. Here, the terminal
set is limited to the set of molecular descriptors avail-
able for a data set, and coefficients and constants for
the model are calculated during the fitness function
itself, as described below. The function set has been
restricted to the sum operator, i.e., F ) {+} to allow
the method to be compared with existing published
methods. (The minus operator is implicit as will be seen
later.)

One potential problem with GP is that there can be a
tendency to generate large and complex trees that result
in overfitting of the data. This can cause difficulties for
QSAR since, as already mentioned, it is desirable to
achieve a balance between model accuracy and model
complexity in order that the model can be used to make
predictions about previously unknown compounds. The
usual way of evaluating a model in QSAR is to use r2,
which is the squared correlation between the y response
(the activity) and a set of variables (descriptors). It is
well-known that r2 tends to increase as the number of
variables increases, so that more complex models tend
to be more accurate. However, a good QSAR model is
considered to be one with a small number of terms and
a high value of r2. Thus, using r2 as the fitness function
is inappropriate since this would naturally favor more
complex models.

Many approaches to QSAR have tackled this difficulty
by specifying the exact number of terms required;
however, this is often difficult since it is not easy to
know beforehand the number of terms that is likely to
give rise to a good model and often several runs will be
performed with varying numbers of terms.

In GP, one way in which tree complexity can be
controlled is to restrict the maximum number of nodes
in a tree or the maximum depth allowed. However,
appropriate limits may vary from one problem to
another depending on the particular relationship that
exists between accuracy and model complexity. An
alternative approach is used here with model complexity
being controlled through the use of a penalty function.
This approach has the advantage that it is not necessary
to set arbitrary limits on the size of the trees.

In GPQSAR, model complexity is controlled through
the use of the Akaike Information Criterion (AIC).18 The
AIC function is used to identify an appropriate model
structure when choosing between models. Specifically,
when two or more competing models can explain data,
then the model with the smallest number of parameters
should be chosen. This principle is known as Occam’s
razor or the law of parsimony.

The AIC penalty function is shown below (eq 2)

where σθ, is the variance of the residuals and is a
measure of the performance of the model; N is the
number of fitness cases or data points; p is the number
of terms in the model; and k is a penalty factor. It can
be seen that the inclusion of additional terms in the
model increases the complexity of the model and is
therefore penalized according to the value of k. Calibra-
tion of k is required in order that an appropriate balance
is found between the residual variance σθ and the
number of terms p. (The calibration of k is described in
the Experimental Section.) Thus, because the AIC
function is used to control model complexity, there is
no need to set limits on the number of nodes or the
depth of tree allowed.

The fitness function of GPQSAR involves the following
three steps. (i) The expression encoded in an individual
is extracted to determine the descriptors that will be
used in the QSAR model, i.e., the xi values in eq 1. (ii)
Optimum values for coefficients and constants (a-d) in
the model are calculated by applying the least squares

ypred ) ax1 + bx2 + ...cxn + d (1)

AIC ) log (σθ) + kp/N (2)
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method (LSM). Positive coefficients indicate a favorable
relationship between a given descriptor, xi, and the
response, ypred, and negative coefficients indicate the
reverse. (The production of negative coefficients during
the LSM means that it is not necessary to include the
minus operator in the function set.) (iii) Fitness is
measured using the AIC function described above. Note
that the number of terms in the model, p, is not
necessarily the same as the number of terminal nodes
in an individual since a given descriptor can appear
more than once; for example, a subtree containing the
expression x1 + x1 consists of two terminal nodes but
the expression unfolds to a single term, 2x1.

Various parameters of GPQSAR are user definable,
for example, population size; the maximum number of
generations; and the relative probabilities of the breed-
ing operators. In the runs described in the Experimental
Section, the population size was set to 200 and the
maximum number of generations was set to 5000.
Crossover, mutation, and reproduction were assigned
with relative probabilities of 0.7, 0.2, and 0.1, respec-
tively, and the trees were free to grow with no limits
on the number of nodes or depth.

Multiobjective Optimization. The aim of GPQSAR
is to derive a single model that represents an appropri-
ate balance between the variance and the number of
terms. However, in general, there will be a family of
equivalent models, where each model represents a
different compromise in the objectives. Thus, QSAR is
an example of a multiobjective optimization problem
that typically comprises two (or more) competitive
objectives.

In GPQSAR, the multiobjective QSAR problem is
effectively reduced to a single objective optimization
problem through the use of the AIC function, which
involves summing the different objectives to give a
single value. The result of running GPQSAR is a single
model only, with the particular compromise between the
objectives being determined by the value of k used in
the AIC function. A further disadvantage of the GPQSAR
method is the need to calibrate k for each data set.

Evolutionary algorithms such as GAs and GP are
well-suited to the true optimization of multiobjective
problems.19 Both GAs and GP have been adapted for
multiobjective optimization in the development of the
multiobjective GA (MOGA)20 and the MOGP,18 respec-
tively.

Both MOGAs and MOGP are based on the idea of
Pareto optimality where a Pareto optimal, or nondomi-
nated, solution is one where another solution does not
exist in the population that is better than it in all of
the objectives. As a result, one solution dominates
another if it is either equivalent, or better, in all of the
objectives and strictly, it is better in at least one
objective. For simplicity, consider a two objective prob-
lem f1 and f2 where the aim is to minimize both
objectives, as shown in Figure 2. Each point in the graph
represents a pair of values, which are the objectives f1
and f2. A solution is nondominated if the square area
bounded by the axes and lines drawn parallel with the
axes from the point does not include any other point.

Pareto frontiers have been used in many applications
of multiobjective optimization; see, for example, the
review article by Coello Coello.21 The first application

in chemoinformatics of which we are aware is the work
of Handschuh et al.22 who used Pareto optimization in
the GA they developed for the flexible superposition of
3D structures. Their method finds the maximum com-
mon substructures, MCSS, between two molecules. The
search for the MCSS involves two criteria: the number
of atoms in the substructure and the fit of the matching
atoms. These are conflicting criteria since a larger
MCSS will by definition have a larger deviation in the
coordinates of the superimposed atoms when the larger
MCSS is a superset of the smaller. Rather than at-
tempting to combine the different criteria into a single
weighted sum fitness function, a set of Pareto solutions
is obtained at the end of each run whereby an optimal
geometric fit is found for each possible size of MCSS.

More recently, the concept of Pareto optimality has
been applied to combinatorial library design in the
program MoSELECT, which is based on a MOGA.23-25

In MoSELECT, a typical library design scenario would
be to design a library that is simultaneously diverse,
cheap to synthesize, and has druglike physicochemical
properties.

Here, the multiobjective approach to deriving QSARs
has the aim of generating QSARs that are simulta-
neously accurate, reliable, and easy to interpret. To this
end, the GP in GPQSAR has been adapted to a MOGP
in the program MoQSAR. The definition of the individu-
als and their representation as parse trees in MoQSAR
are the same as in GPQSAR. The main difference to
GPQSAR is that the AIC fitness function is no longer
used and fitness is now calculated on the basis of Pareto
ranking determined from the values of the individual
objectives, without the need for summation. Each time
a new individual is generated, the expression encoded
in the tree is extracted, LSM is run to calculate the best
coefficients for the model, and the objectives are calcu-
lated independently and stored. Because each objective
is treated independently, accuracy can now be measured
using r2. Using the number of terms p as a second
objective allows the relationship between r2 and p to be
explored directly.

After each generation, the individuals are ranked
according to the number of individuals in the population

Figure 2. Potential solutions to a two objective (f1 and f2)
problem. The solid circles are nondominated solutions and fall
on the Pareto frontier. Dominated solutions are shown as
unfilled circles. In MoQSAR, individuals are ranked according
to the number of times they are dominated; thus, nondomi-
nated solutions are given rank zero and the dominated
solutions are given ranks as shown.
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by which they are dominated. Thus, nondominated
individuals are assigned rank zero, individuals that are
dominated by one individual are assigned rank one, and
so on. The fitness of an individual is then determined
by its rank, or dominance, with individuals having low
dominance being preferred to individuals with higher
dominance.

The result of MoQSAR is a family of models where
each model represents a different compromise in the
objectives. A further advantage as compared to the AIC
function used in GPQSAR is that calibration is no longer
required to find a balance between the accuracy and the
number of terms. In fact, for a two objective problem
where the objectives are r2 and p, there will be one
solution for each distinct number of terms and that
solution will be the one with the best value of r2

generated throughout the GP for the given number of
terms.

MOGP (and MOGAs) can be applied to include any
number of objectives, not just two, and the following
section describes objectives additional to r2 and p that
have been investigated so far in the QSAR context. In
MoQSAR, the function set has been extended to include
quadratic and cubic terms and the objective s is used
to penalize models that contain higher order terms over
linear models. Thus, s can be thought of as a measure
of the internal complexity of a model. Models with linear
terms only are assigned s ) 1; s is incremented by one
for each quadratic term and by two for each cubic term
contained within the model.

The final objective, called desirability, relates to the
chemical interpretability of the descriptors used in the
QSAR model. So far, we have described QSAR as a
compromise between different objectives that are es-
sentially statistical parameters. However, QSAR is not
only a mathematical problem aimed at relating a
numerical description of molecular structure or proper-
ties to known biological activity; it is also important that
the models can be used predictively, to suggest new
compounds for testing. To be useful for prediction
purposes, models should be constructed from descriptors
that are easily interpretable by chemists. However,
analyses involving large numbers of descriptors often
include some descriptors whose meaning can be obscure.
In such cases, models having poorer statistics may be
preferable to more accurate models that contain hard
to interpret descriptors.

The chemical desirability objective, D, is a knowledge-
based function designed to drive the selection of de-
scriptors in QSAR models toward those that have been
flagged as desirable. Each descriptor is assigned a
desirability value, d, of 3, 2, or 1, which corresponds to
the categories: excellent, fair, or poor, respectively. The
assignments are user definable and should be based on
a priori knowledge or chemical intuition. The chemical
desirability of the model is then calculated as

where avg is the arithmetic mean, ∑i)1
p di/p, and

geomean is the geometric mean, pxd1.d2...dp, respec-
tively; di is the desirability of the ith descriptor in the
model; and n is the number of unique descriptors
included in the model. For a model consisting of linear

terms only, n is the same as p; however, it is possible
for the same descriptor to appear as both a linear term
and a power term in which case it is counted only once
and n < p. Thus, D is used to reward the presence of
more desirable descriptors.

As with GPQSAR, various parameters are config-
urable, and for the runs described in the Experimental
Section, MoQSAR was run for 2000 generations with a
population size of 200, with the breeding parameters
unchanged from the GPQSAR runs. The maximum
number of nodes allowed in a tree was limited to 14,
which means that the maximum number of terms that
can be included in a model is seven.

Results and Discussion

(1) Data Sets. The GPQSAR approach has been
tested on the Selwood data set,3 which consists of 31
compounds, 53 descriptors, and a set of corresponding
antifilarial antimycin activities, expressed as -log(IC50).
The molecular descriptors are listed in Table 1.

The MoQSAR approach has been tested on three data
sets. The first is the Selwood data set already described.
The other two data sets are solubility data sets where
MoQSAR is used to find QSPRs. The first solubility data
set was supplied by Huuskonen26 and consists of 1272
structures with logP values and with solubility as the
dependent variable, given as logS. The solubility values
are in the range of -11.62 to +1.58 log units. In
addition, 72 Molconn-Z parameters were calculated as
molecular descriptors.27 These include simple and va-
lence molecular connectivity indices, simple and valence
difference connectivity indices, shape indices, electro-
topological state indices, and hydrogen bond donor
indices. The full list of molecular descriptors is reported

D ) (avg × geomean + 1)/(n × geomean) (3)

Table 1. Descriptors for the Selwood Data Seta

ID descriptor d ID descriptor d ID descriptor d

X1 ATCH1 2 X19 ESDL5 1 X37 MOFI_X 1
X2 ATCH2 2 X20 ESDL6 1 X38 MOFI_Y 1
X3 ATCH3 2 X21 ESDL7 1 X39 MOFI_Z 1
X4 ATCH4 2 X22 ESDL8 1 X40 PEAX_X 1
X5 ATCH5 2 X23 ESDL9 1 X41 PEAX_Y 1
X6 ATCH6 2 X24 ESDL10 1 X42 PEAX_Z 1
X7 ATCH7 2 X25 NSDL1 1 X43 MOL_WT 3
X8 ATCH8 2 X26 NSDL2 1 X44 S8_1DX 3
X9 ATCH9 2 X27 NSDL3 1 X45 S8_1DY 3
X10 ATCH10 2 X28 NSDL4 1 X46 S8_1DZ 3
X11 DIPV_X 2 X29 NDSL5 1 X47 S8_1CX 1
X12 DIPV_Y 2 X30 NDSL6 1 X48 S8_1CY 1
X13 DIPV_Z 2 X31 NDSL7 1 X49 S8_1CZ 1
X14 DIPMOM 2 X32 NDSL8 1 X50 LOGP 3
X15 ESDL1 1 X33 NDSL9 1 X51 M_PNT 1
X16 ESDL2 1 X34 NDSL10 1 X52 SUM_F 3
X17 ESDL3 1 X35 VDVWOL 3 X53 SUM_R 3
X18 ESDL4 1 X36 SURF_A 3

a The descriptors are as follows: partial atomic charges for
atoms 1-10 (ATCH1-ATCH10); dipole vector (DIPV_X, DIPV_X,
DIPV_X); dipole moment (DIPMOM); electrophilic superdelocal-
izability for atoms 1-10 (ESDL1-ESDL10); nucleophilic super-
delocalizability for atoms 1-10 (NSDL1-NSDL10); van der Waals
volume (VDWVOL); surface area (SURF_A); principal moments
of inertia (MOFI_X, MOFI_Y, MOFI_Z); principal elipsoid axes
(PEAX_X, PEAX_Y, PEAX_Z); molecular weight (MOL_WT); sub-
stituent dimensions (S8_1DX, S8_1DY, S8_1DZ); substituent
centers (S8_1CX, S8_1CY, S8_1CZ); partition coefficient (LOGP);
melting point (M_PNT); sums of the F and R substituent constants
(SUM_F, SUM_R). The columns headed ID give codes assigned
to the descriptors in the subsequent tables. The columns headed
d represent user-defined chemical desirability values.
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in Table 2. This data set is referred to as the Aquax
data set.

The second QSPR data set was supplied by McElroy
and Jurs28 and consists of 176 organic compounds with
associated solubility values ranging from -7.41 to 0.96
log units and 12 descriptors. An additional 28 descrip-
tors were calculated using Molconn-Z. The full list of
molecular descriptors is reported in Table 3. The
compounds contain a minimum of one nitrogen atom,

zero or more oxygen atoms, and zero or more halogens
per molecule. This data set is referred to as the Nitrogen
data set.

(2) Application of GPQSAR to the Selwood Data
Set. The program was parametrized to combine the 53
physical property descriptors (Table 1) using only the
“+” operator (note that this can result in both + and
“-” arithmetic in the QSAR equation, according to the
signs of the coefficients generated during the GP).

For GPQSAR to function properly, an appropriate
value of k, the penalty factor, must be determined, to
balance the accuracy of the model, i.e., how well the
model fits the training data measured by the residual
variance, log(σθ), with the number of terms, p. This was
achieved by carrying out several runs of GPQSAR for
different values of k. Figure 3 shows the relationship
between log(σθ) and p observed during the calibration
runs. As can be seen, high values of k lead to models
with relatively high residual variance and a low number
of terms. These models are called short term QSAR
models and represent a poor fit to the data points.
Conversely, low values of k lead to models with low
residual variance and a high number of terms. These
models are called long term models since they represent
a good fit to the data points, but to do so, they employ
complex QSARs. Optimal models are expected to be
those that represent a compromise between short and
long term models, that is, models that are neither too
simple nor too complex. The intersection point in Figure
3 between the log(σθ) and the p curves is taken as the
optimal k value; hence, k was set at 2.58.

Ten runs of GPQSAR were then carried out. Table 4
lists the best models found (some of the models were
found more than once as indicated) where q2, calculated
using leave-one-out (LOO) cross-validation, is also
reported. As can be seen, the results consist of models
with between three and six molecular descriptors. The
method has been successful in finding literature mod-
els,2,3,7-11,13 with five of the models corresponding to the
top five models reported by Kubinyi11 for this data set.

Table 2. Descriptors for the Aquax Data Seta

ID descriptor d ID descriptor d ID descriptor d

X1 LOGP 3 X26 dx1 2 X51 ka3 3
X2 x0 2 X27 dx2 2 X52 si 1
X3 x1 2 X28 dxp3 2 X53 Totop 2
X4 x2 2 X29 dxp4 2 X54 sumI 3
X5 xp3 2 X30 dxp5 2 X55 sumdelI 3
X6 xp4 2 X31 dxp6 2 X56 tets2 2
X7 xp5 2 X32 dxp7 2 X57 Phia 3
X8 xp6 2 X33 dxp8 2 X58 SHsOH 3
X9 xp7 2 X34 dxp9 2 X59 SHdNH 3
X10 xp8 2 X35 dxv0 2 X60 SHsSH 3
X11 xp9 2 X36 dxv1 2 X61 SHsNH2 3
X12 xv0 3 X37 dxv2 2 X62 SHssNH 3
X13 xv1 3 X38 dxvp3 2 X63 SHtCH 3
X14 xv2 3 X39 dxvp4 2 X64 SHother 3
X15 xvp3 3 X40 dxvp5 2 X65 SHCHnX 3
X16 xvp4 3 X41 dxvp6 2 X66 Hmax 3
X17 xvp5 3 X42 dxvp7 2 X67 Gmax 2
X18 xvp6 3 X43 dxvp8 2 X68 Hmin 3
X19 xvp7 3 X44 dxvp9 2 X69 Gmin 2
X20 xvp8 3 X45 k0 1 X70 Hmaxpos 1
X21 xvp9 3 X46 k1 1 X71 SHHBD 3
X22 xc3 2 X47 k2 1 X72 SHHBA 3
X23 xc4 2 X48 k3 1 X73 Qv 3
X24 xpc4 2 X49 ka1 3
X25 dx0 2 X50 ka2 3

a The reader is referred to the Molconn-Z manual for descrip-
tions of properties 2-73. The columns headed ID give codes
assigned to the descriptors in the subsequent tables. The columns
headed d represent user-defined chemical desirability values.

Table 3. Descriptors for the Nitrogen Data Seta

ID descriptor d ID descriptor d ID descriptor d

X1 MDE_14 3 X15 x2 2 X29 k1 1
X2 GEOM_3 3 X16 xv0 3 X30 k2 1
X3 PPSA_1 3 X17 xv1 3 X31 k3 1
X4 FPSA_1 3 X18 xv2 3 X32 ka1 3
X5 SCDH_2 3 X19 xvp3 3 X33 ka2 3
X6 NN 3 X20 dx0 2 X34 ka3 3
X7 NSB 3 X21 dx1 2 X35 Si 1
X8 WTPT_2 3 X22 dx2 2 X36 Totop 2
X9 EAVE_2 3 X23 dxp3 2 X37 SumI 3
X10 GEOM_1 3 X24 dxv0 2 X38 SumdelI 3
X11 FPSA_2 3 X25 dxv1 2 X39 tets2 2
X12 CTDH 3 X26 dxv2 2 X40 Phia 3
X13 x0 2 X27 dxvp3 2
X14 x1 2 X28 k0 1

a The descriptors are as follows: MDE_14 is the molecular
distance edge between all primary and quaternary carbons;
GEOM_3 is the third geometric moment; PPSA_1 is the summa-
tion of the positive surface area; FPSA_1 is the positive surface
area divided by the total surface area; SCDH_2 is the average
surface area times charge on donatable hydrogens; NN is the
number of nitrogens; NSB is the number of single bonds; WTPT_2
is the sum of unique weighted paths divided by the total number
of atoms; EAVE_2 is the average E-state value over all heteroa-
toms; GEOM_1 is the first geometric moment; FPSA_2 is the
fractional charged partial surface area; CTDH is the number of
donatable hydrogens. The reader is referred to the Molconn-Z
manual for descriptions of X13-X40. The columns headed d
represent user-defined chemical desirability values.

Figure 3. Calibrating the penalty factor k in the AIC function
for the Selwood data set. The dashed line shows the normalized
residual variance (log(σθ))), and the dotted line shows the
normalized number of terms. In both cases, the results are
averaged over five runs at different values of k. The optimum
value of k is chosen as the intersection point.
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The use of the AIC penalty function as the fitness
function in GPQSAR has therefore proved to be useful
in finding good QSAR models and has the advantage
over existing methods that the user does not need to
specify the number of terms required in the model.
Varying sized models are explored during the search
process, and the solution found is the model that reflects
the best compromise between the residual variance and
the number of terms. However, as already stated,
disadvantages of the approach are that a single model
only is found and that k must be calibrated for each data
set. Hence, the next experiments were carried out using
MoQSAR, which does not suffer from these limitations.

(3) Application of MoQSAR to the Selwood Data
Set. Initially, MoQSAR was used to find models for the
Selwood data set based on optimizing two objectives
only, namely, the correlation of predicted vs observed
response, r2, and the number of terms, p. The goal was
to maximize r2 while minimizing p. This time, the
program was allowed to use +, quadratic, and cubic
functions with which to combine the 53 descriptors.
Thus, nonlinear terms were allowed when building
QSAR models (although cross-terms were not allowed).

The models resulting from a single run of MoQSAR
are shown in Figure 4 where r2 is plotted against p.
Seven solutions were found with each solution being the
best model found for a given number of terms, for
example, the best model consisting of a single term, the
best model consisting of two terms, up to the best model
consisting of seven terms. As expected, the graph shows
that accuracy is in conflict with model complexity with
r2 increasing as the number of terms increases. Each of
the solutions found represents a different compromise
between r2 and p. The models corresponding to these
solutions are shown in Table 5, where q2, the squared
correlation coefficient of prediction calculated using the
LOO procedure, is also reported. Improved values of r2

and q2 are achieved relative to GPQSAR optimization,

due to the presence of quadratic and cubic terms, which
were permitted in the function set. The best four term
QSAR model found includes a cubic term (SURF_A) and
a quadratic term (SUM_R) and is shown in eq 4.

In general, the presence of higher order relationships
in QSAR models is undesirable; hence, the next experi-
ment investigated the effect of including an additional
objective in the search, namely, the number of nonlinear
terms, s. The goal of the optimization was to maximize
r2 and to minimize p and s. Results are shown in Figure
5 where a parallel coordinates graph is used to illustrate
the relationship between the three objectives. In this
representation, each line in the graph represents a
nondominant solution to the problem, indicating the
achieved objective values for that solution. The compet-
ing nature of the objectives is shown clearly by the
crossing lines with the more accurate models consisting
of larger numbers of terms and also containing terms
that are nonlinear.

Including the third objective, s, results in more than
one QSAR model for a given number of terms with the
total number of solutions increasing from seven for the
two objective case to 16 for three objectives. Statistical
details of the models are given in Table 6. All linear
3-6 term models are included in Kubinyi’s best list.
Additional models are also found, which contain non-
linear terms. Three four term models were identified
as follows: one consisting of linear terms only (with s
) 1), one including a quadratic term (with s ) 2), and
one including a cubic term (with s ) 3). All of these
models represent simpler models than the previously
reported four term model, when optimizing r2 and p
only. The linear model is shown in eq 5 where it can be
seen that the simpler model is achieved at the expense
of some loss in fit to the data points relative to eq 4.

The model includes the well-understood descriptor
logP and a descriptor based on atomic charge (ATCH4),
which is also readily interpretable. However, relation-
ships between electrophilic superdelocalizability (ES-
DL3) and biological response and between principle
ellipsoid axis (PEAK_X) and biological response are not

Table 4. Models Found by Applying GPQSAR to the Selwood Data Set Using AIC as the Fitness Function with the Penalty Factor k
Set to 2.58a

descriptors r2 q2 AIC N

4.824 X4 + 12.018 X5 - 0.114 X11 - 5.019 × 10-5 X39 + 0.402 X50 - 1.277 0.826 0.696 0.510 2
4.712 X4 + 12.406 X5 - 0.118 X11 - 5.027 × 10-5 X38 + 0.406 X50 - 1.268 0.826 0.696 0.510 3
2.669 X4 - 0.182 X11 - 6.150 × 10-5 X38 - 0.035 X48 + 0.471 X50 - 2.577 X52 - 2.209 0.853 0.754 0.499 1
2.886 X4 - 0.176 X11 - 6.102 × 10-5 X39 + 0.033 X48 + 0.462 X50 + 2.488 X52 - 2.179 0.853 0.751 0.499 1
2.328 X4 - 0.130 X11 - 7.415 × 10-5 X38 + 0.499 X50 + 2.049 X52 - 1.821 0.813 0.692 0.478 2
-7.488 × 10-5 X38 + 0.584 X50 + 1.514 X52 - 2.501 0.721 0.647 0.470 1
a The solutions are sorted by their AIC values. N is the number of times each model was found. q2 is also reported for each model.

Figure 4. Models found for the Selwood data set using
MoQSAR parametrized to optimize the two objectives, r2 and
the number of terms p.

-log(EC50) ) 0.67183 LOGP -

2.8519 × 10-8 (SURF_A)3 + 1.8824 SUM_F +
17.485 (SUM_R)2 + 3.68537

r2 ) 0.830; q2 ) 0.782 (4)

-log(EC50) ) 0.49984 LOGP + 2.8075 ATCH4 +
0.84222 ESDL3 - 0.19960 PEAK_X + 1.7908

r2 ) 0.774; q2 ) 0.636 (5)
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particularly intuitive. Thus, although the model is
statistically sound, it does not promise to engage the
chemists’ imagination.

MoQSAR was then used to investigate the effect of
including chemical desirability, D, as an objective. The
molecular descriptors were assigned desirability values
as shown in the columns headed d in Table 1. Examples
of descriptors rated as excellent are dipole moment
(DIPMOM), molecular weight (MOL_WT), van der
Waals volume (VDWVOL), surface area (SURF_A), and
LOGP. These are all descriptors that are intuitive to

the chemist. MoQSAR was run with the four objectives
r2, p, s, and Dnorm, where D is calculated from the
individual values of the descriptors (see Table 1 and eq
3) and Dnorm is D normalized by the best and worst
values achievable for a given number of descriptors.

The results are shown in Figure 6 as a parallel
coordinates graph representation where it can be seen
that the introduction of desirability as a fourth objective
has resulted in a further increase in the number of
solutions. A total of 44 QSARs were identified during
the MoQSAR run. The 3-5 term models are reported
in Table 7. The four term model with the highest r2 was
found previously and has also been reported by Kubinyi;
however, this model has a relatively poor desirability
rating. Three additional four term models, not reported
by Kubinyi, were also found in which accuracy has been
traded for desirability. The linear four term model with
the best desirability rating is shown in eq 6.

All of the descriptors are rated as excellent. The model
has slightly poorer statistics than the model found
previously (eq 5); however, it represents a much more
intuitive model and hence may represent a better
compromise in the objectives. Thus, MoQSAR has
yielded a model in which statistical robustness has been
traded for chemical interpretability. Such models will
not be found by traditional optimization methods that
are based on optimizing model accuracy alone.

Table 5. Models Shown in Figure 4 that Were Found by Applying MoQSAR to the Selwood Data Set Optimized on r2 and pa

descriptors r2 p q2

177.467(X7)3 + 2.338 0.371 1 0.303
-2.827 × 10-8(X36)3 + 0.676 X50 - 2.037 0.663 2 0.606
-2.493 × 10-8(X36)3 + 0.572 X50 + 1.336 X52 - 2.344 0.754 3 0.692
-2.852 × 10-8(X36)3 + 0.672 X50 + 1.882 X52 + 17.485(X53)2 - 3.685 0.830 4 0.782
0.101 X20 - 2.986 × 10-8(X36)3 + 0.679 X50 + 1.970 X52 + 18.637(X53)2 - 3.590 0.855 5 0.805
0.119 X20 - 3.178 × 10-8(X36)3 - 0.138 X49 + 0.682 X50 + 2.239 X52 + 22.223(X53)2 - 3.852 0.876 6 0.826
0.035 X18 - 0.285 X30 - 3.453 × 10-8(X36)3 - 0.144 X49 + 0.710 X50 + 2.612 X52 + 23.347(X53)2 - 3.789 0.897 7 0.835

a q2 is also reported for each model.

Figure 5. Parallel coordinates graph representation is shown
of models found for the Selwood data set optimized on three
objectives (r2, p, and s). Normalized values of the objectives
are plotted on the y axis with r2 plotted as 1 - r2 so that the
direction of improvement in all objectives is toward zero. Each
continuous line in the graph represents one solution.

Table 6. Descriptors of the Models Shown in Figure 5 that
Were Found by Applying MoQSAR to the Selwood Data Set
Optimized on r2, p, and sa

descriptors r2 p s q2

X6 0.367 1 1 0.309
(X7)3 0.371 1 3 0.303

X39 X50 0.610 2 1 0.533
(X36)2 X50 0.641 2 2 0.573
(X36)3 X50 0.663 2 3 0.606

X38 X50 X52 0.721 3 1 0.647
(X38)2 X50 X52 0.751 3 2 0.692
(X36)3 X50 X52 0.754 3 3 0.692

X4 X17 X40 X50 0.774 4 1 0.636
X4 X5 (X39)2 X50 0.809 4 2 0.682
X4 X5 (X39)3 X50 0.814 4 3 0.697

X4 X5 X11 X39 X50 0.826 5 1 0.696
X4 X5 X11 (X39)2 X50 0.851 5 2 0.733

X4 X11 X39 X48 X50 X52 0.853 6 1 0.751
X4 X5 X6 X11 (X39)2 X50 0.870 6 2 0.767
X4 X5 X6 X11 X33 X39 X50 0.859 7 1 0.392
a The coefficients have not been included for reasons of brevity.

q2 is also reported for each model.

Figure 6. Parallel coordinates graph representation is shown
of the solutions found for the Selwood data set optimized on
four objectives (r2, p, s, and Dnorm). The normalized values of
the objectives are plotted, and r2 and Dnorm are plotted as
1 - r2 and 1 - Dnorm, respectively, so that the direction of
improvement is toward zero on the y axis.

-log(EC50) ) 0.46825 LOGP -

1.9043 × 10-2 VDVWOL +
7.0068 × 10-3 MOL_WT +

1.3645 SUM_F + 0.14079

r2 ) 0.730; q2 ) 0.616 (6)
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The final run on the Selwood data set was based on
optimizing q2, calculated using LOO cross-validation, in
addition to the previous objectives. The four term models
found are reported in Table 8. Two extra linear models
are found as compared to those found in the previous
run. One of these models is shown in eq 7.

The model has the same value of r2 as the previous
model (eq 6) but has a higher q2. However, this has been
achieved at the expense of some chemical desirability;
hence, in this case, improved prediction has been traded
with interpretability of descriptors. The descriptors van
der Waals volume and molecular weight, both rated as

excellent, have been replaced by surface area, also rated
excellent, and an atomic charge descriptor, which is
rated as fair only.

(3) Application of MoQSAR to the Aquax Data
Set. The Aquax data set was partitioned at random into
a training and a test set made up of 1000 and 272
structures, respectively. The program was allowed to
use +, quadratic, and cubic functions with which to
combine the 73 molecular descriptors reported in Table
2. Desirability values were assigned to each of the
descriptors on the basis of ranks indicated in the
Molconn-Z manual, and the values are shown in the
columns headed d in Table 2.

Table 9 summarizes the results of running MoQSAR
with the four objectives, r2, p, s, and Dnorm. A family of
22 models was found consisting of up to seven variables.
LOGP occurs in all of the models, which is not surpris-
ing since it is known to be highly relevant in explaining
molecular solubility; hence, this is consistent with
chemical intuition.

The two term linear model reported in Table 9 is
discussed here. The full QSAR notation for the model
is given in eq 8.

The model derived using the training set was subse-
quently validated on the test set. Figure 7 shows logS
predicted by the model plotted against observed logS
for the test set. The correlation coefficient (rtrn/tst

2 )
0.784) between the predicted and the experimental logS
of the training and test set as well as the q2 ) 0.796
calculated using LOO cross-validation of the training
set proves the statistical reliability of this model.

Table 7. Descriptors for the Three, Four, and Five Term
Models Shown in Figure 6 that Were Found by Applying
MoQSAR to the Selwood Data Set Optimized on r2, p, s, and Da

descriptors r2 p s Dnorm q2

X38 X50 X52 0.721 3 1 0.611 0.647
X36 X50 X52 0.687 3 1 1.000 0.586
(X38)2 X50 X52 0.751 3 2 0.611 0.692
(X36)2 X50 X52 0.729 3 2 1.000 0.657
(X36)3 X50 X52 0.754 3 3 1.000 0.692

X4 X5 X39 X50 0.772 4 1 0.403 0.624
X4 X39 X50 X52 0.756 4 1 0.552 0.619
X38 X43 X50 X52 0.740 4 1 0.704 0.646
X35 X43 X50 X52 0.730 4 1 1.000 0.616
X39 X50 X52 (X53)2 0.789 4 2 0.704 0.720
X36 (X36)2 X50 X52 0.766 4 2 1.000 0.682
X13 (X36)3 X50 X52 0.777 4 3 0.839 0.696
(X35)3 X43 X50 X52 0.768 4 3 1.000 0.688
(X36)3 X50 X52 (X53)2 0.830 4 4 1.000 0.782

X4 X5 X38 X43 X50 0.800 5 1 0.516 0.640
X4 X36 X37 X50 X52 0.782 5 1 0.638 0.630
X11 X14 X36 X50 X52 0.765 5 1 0.744 0.655
X9 X35 X43 X50 X52 0.764 5 1 0.871 0.668
X35 X43 X44 X50 X52 0.735 5 1 1.000 0.591
X4 X10 (X39)2 X50 X52 0.804 5 2 0.516 0.673
X36 X38 X50 X52 (X53)2 0.802 5 2 0.761 0.705

X8 X36 X50 X52 (X53)2 0.799 5 2 0.871 0.729
X35 X36 (X36)2 X50 X52 0.773 5 2 1.000 0.648
X4 X11 (X36)3 X50 X52 0.802 5 3 0.744 0.668
X4 X36 (X36)3 X50 X52 0.800 5 3 0.839 0.610
(X35)3 X36 X43 X50 X52 0.780 5 3 1.000 0.680

a The coefficients have not been included for reasons of brevity.
q2 is also reported for each model.

Table 8. Descriptors for the Four Term Models Found by
Applying MoQSAR to the Selwood Data Set Optimized on r2, p,
s, D, and q2a

descriptors r2 p s Dnorm q2

X4 X5 X39 X50 0.772 4 1 0.403 0.624
X4 X39 X50 X52 0.756 4 1 0.552 0.619
X11 X38 X50 X52 0.755 4 1 0.552 0.660
X12 X38 X50 X52 0.745 4 1 0.552 0.665
X38 X43 X50 X52 0.740 4 1 0.704 0.646
X35 X43 X50 X52 0.730 4 1 1.000 0.616
X8 X36 X50 X52 0.730 4 1 0.839 0.641
X4 (X39)2 X50 X52 0.803 4 2 0.552 0.685
X38 X50 X52 (X53)2 0.799 4 2 0.704 0.740
X36 (X36)2 X50 X52 0.766 4 2 1.000 0.682
(X36)2 X50 X52 (X53)2 0.807 4 3 1.000 0.751

a The coefficients have not been included for reasons of brevity.

-log(EC50) ) 0.57740 LOGP -

1.3356 × 10 - 2 SURF_A + 1.3728 SUM_F +
12.977 ATCH8 - 4.2123

r2 ) 0.730; q2 ) 0.641 (7)

Table 9. Descriptors for Models Found by Applying MoQSAR
to the Aquax Data Set Optimized on r2, p, s, and Da

descriptors r2 p s Dnorm q2

X1 0.687 1 1 1.000 0.684

X1 X54 0.798 2 1 1.000 0.796

X1 X54 X67 0.830 3 1 0.786 0.828
X1 X12 X68 0.818 3 1 1.000 0.815
X1 (X1)2 X4 0.831 3 2 0.681 0.828
X1 (X1)2 X54 0.827 3 2 1.000 0.824

X1 X54 X61 X67 0.838 4 1 0.839 0.836
X1 X12 X61 X68 0.827 4 1 1.000 0.825
X1 (X1)2 X54 X67 0.844 4 2 0.786 0.841
X1 (X1)2 X12 X68 0.837 4 2 1.000 0.835

X1 X36 X54 X55 X67 0.843 5 1 0.744 0.840
X1 X54 X58 X61 X67 0.842 5 1 0.871 0.840
X1 X12 X61 X66 X68 0.834 5 1 1.000 0.831
X1 (X1)2 X54 X58 X67 0.853 5 2 0.839 0.850
X1 (X1)2 X12 X66 X68 0.844 5 2 1.000 0.841

X1 X36 X54 X58 X67 X68 0.846 6 1 0.786 0.843
X1 X54 X58 X61 X67 X68 0.845 6 1 0.892 0.842
X1 X12 X18 X61 X66 X68 0.834 6 1 1.000 0.831
X1 (X1)2 X54 X58 X67 X71 0.856 6 2 0.871 0.853
X1 (X1)2 X12 X61 X66 X68 0.847 6 2 1.000 0.844
X1 (X1)2 X54 X58 X68 (X73)2 0.848 6 3 1.000 0.845

X1 X15 X25 X35 X54 X66 X73 0.85 7 1 0.816 0.847
X1 X12 X54 X61 X66 X67 X68 0.849 7 1 0.908 0.846
(X1)2 X1 X12 X54 X58 X67 X68 0.858 7 2 0.892 0.855

a The coefficients have not been included for reasons of brevity.
q2 is also reported for each model. The two term model was used
to predict logS for the 272 structures in the test set.

logS ) -0.795 LOGP - 0.041 SUML + 0.555

r2 ) 0.798; q2 ) 0.796 (8)
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The effect of removing LOGP as a descriptor was also
investigated. MoQSAR was run with the terminal set
reduced by one element, which was LOGP, and a family
of 28 equivalent QSAR was collected. Despite the
removal of LOGP, MoQSAR resulted in r2 and q2

statistics that are still acceptable, with their values
falling in the ranges of 0.420-0.762 and 0.418-0.758,
respectively. The three two term models identified when
optimizing r2, p, s, and Dnorm are given in eqs 9-11.

Finally, randomization studies were performed to
verify that the models found by MoQSAR were not due
to chance correlations. For ease of interpretation, the
randomization experiments were performed for the two
objective case with MoQSAR configured to optimize r2

and p. The activity data for the training set were
scrambled 50 times, and MoQSAR was applied to each
randomized data set. The results for the scrambled
training sets are presented in Table 10 as the maximum
values of r2and q2 found for each value of p. The values
of r2 and q2 for the original (unscrambled data) are also
shown. The much lower values of r2 and q2 for the
scrambled data for any given number of terms confirm

that the correlations found previously are not due to
chance correlations.

The results presented here are not directly compa-
rable with those obtained by Huuskonen for several
reasons. First, the data set was supplied as a whole and
was subsequently partitioned at random; thus, the test
set and training set used here will differ from those used
by Huuskonen. Second, there are some differences in
the descriptors used in the two studies. Third, MoQSAR
was used to attempt to find models that balanced
accuracy with complexity; hence, in general, the aim
was to find models consisting of a relatively small
number of easily interpretable descriptors. On the basis
of multilinear regression and artificial neural networks,
Huuskonen was able to derive a model with impressive
statistics (n ) 884, r2 ) 0.89, q2 ) 0.88); however, the
model consists of 30 different parameters. Conversely,
MoQSAR resulted in a large number of equivalent
QSARs, which are much simpler in terms of their
structural complexity and consequently more interpret-
able.

(4) Application of MoQSAR to the Nitrogen Data
Set. Finally, the Nitrogen data set was analyzed. The
176 structures were divided at random into a training
set of 141 structures and a test set of 35 structures. The
terminal set consists of the 40 molecular descriptors
listed in Table 3. The desirability values assigned to
each descriptor are shown in the column headed d.

MoQSAR was run to optimize four objectives (r2, s, p,
and Dnorm), and the results are collected in Table 11.
As can be seen, five of the descriptors provided by
McElroy and Jurs occur with high frequency, namely,
WTPT-2 and MDE-14 that code topological information,
GEOM-3 that represents the third geometric moment,
and SDCH-2 and CTDH that represent the average
surface area times the charge on donatable hydrogens
and the number of donatable hydrogens, respectively.
Another frequently occurring descriptor is the Mol-
conn-Z parameter, xv0, which is a connectivity valence
path index. The following four term model found by

Figure 7. Correlation between the experimental and the
predicted logS of the test set of 272 structures for the Aquax
data set. The line represents the ideal correlation between
experimental and predicted logS.

Table 10. Statistics Are Reported for 50 Runs of MoQSAR on
the Aquax Data Set with Scrambled Dataa

p r2 rMAX
2 q2 qMAX

2

1 0.687 0.019 0.684 0.013
2 0.798 0.026 0.796 0.021
3 0.831 0.031 0.828 0.024
4 0.844 0.033 0.841 0.023
5 0.853 0.034 0.850 0.022
6 0.856 0.035 0.853 0.02
7 0.858 0.04 0.855 0.026

a The runs were designed to optimize r2 and p. r2 and q2

represent the values found for unscrambled data. rMAX
2 and qMAX

2

represent the best values of r2 and q2 found for each value of p
over 50 runs using the scrambled data.

logS ) -0.565 xv0 + 0.134 sumdell + 0.772

r2 ) 0.555; q2 ) 0.551 (9)

logS ) -0.447 xv0 + 0.267 Gmax - 1.304

r2 ) 0.590; q2 ) 0.587 (10)

logS ) -0.843 × 1 - 0.851 dxv0 + 0.317

r2 ) 0.604; q2 ) 0.601 (11)

Table 11. Descriptors for Models Found by Applying MoQSAR
to the Nitrogen Data Set Optimized on r2, p, s, and Dnorm

a

descriptors r2 p s Dnorm q2

X17 0.461 1 1 1.000 0.436

X1 X16 0.609 2 1 1.000 0.592
X14 (X29)3 0.610 2 3 0.155 0.590

X1 X2 X16 0.666 3 1 1.000 0.646

X1 X2 X5 X16 0.699 4 1 1.000 0.676

X1 X2 X5 X16 X22 0.726 5 1 0.871 0.703
X1 X2 X5 X9 X16 0.716 5 1 1.000 0.689
X1 X2 X12 X16(X22)2 0.735 5 2 0.871 0.714
X1 X2 X5 (X9)2 X16 0.719 5 2 1.000 0.693
X1 X2 X5 (X9)3 X16 0.719 5 3 1.000 0.694

X1 X2 X5 X9 X15 X38 0.741 6 1 0.892 0.710
X1 X2 X5 X8 X9 X16 0.738 6 1 1.000 0.709
X1 X2 X5 (X9)2 X15 X38 0.748 6 2 0.892 0.721
X1 X2 X5 X8 (X9)2 X16 0.740 6 2 1.000 0.712
X1 X2 X5 (X8)3 X9 X16 0.740 6 3 1.000 0.711

X1 X2 X5 X9 X16 X36 X38 0.747 7 1 0.908 0.709
X1 X2 X3 X5 X8 (X9)2 X16 0.742 7 2 1.000 0.708
X1 X2 X5 (X8)3 X9 X16 X37 0.743 7 3 1.000 0.707

a The coefficients have not been included for reasons of brevity.
q2 is also reported for each model. The four term model was used
to predict logS for the 35 structures in the test set.

5078 Journal of Medicinal Chemistry, 2002, Vol. 45, No. 23 Nicolotti et al.



running MoQSAR on the training set is presented here

As for the Aquax data set, a validation study was per-
formed to predict the 35 structures in the test set.
Figure 8 shows the predicted logS plotted against ob-
served logS when the model is applied to the test set.
The correlation coefficient (rtrn/tst

2 ) 0.658) between the
predicted and the experimental logS of the training and
test set, as well as the q2 ) 0.676 of LOO cross-val-
idation of the training set proves the statistical reli-
ability of this model.

Again, 50 randomization studies were conducted by
scrambling the logS data in the training set to verify
that the models found were not due to chance correla-
tions. MoQSAR was applied to each randomized data
set to optimize the two objectives, r2 and p, and the
results for the scrambled training sets are presented in
Table 12. The much lower values of r2 and q2 found for
the scrambled data for any given number of terms rela-
tive to the unscrambled data indicate that the correla-
tions reported in Table 11 are not due to chance
correlations.

(5) Robustness and Efficiency. GP is a nondeter-
ministic search method, and so, a final experiment was
carried out to test the robustness of MoQSAR. Ten runs
were carried out on the Selwood data set with the aim
of optimizing r2 and p. As can be seen in Table 13, the
low standard deviations over the 10 runs demonstrate
the robustness of the method.

A typical GPQSAR run on the Selwood data set with
a population size of 200 and 2000 iterations takes on
average 60 min to find a single solution whereas a single
run of MoQSAR with the same GP parameters finds a
whole family of solutions in an average of 45 min (SGI
R10K workstation at 195 MHz).

Conclusions

Two novel methods have been developed that aim to
derive QSAR models that explore the tradeoff between
model accuracy and complexity. Both methods are based
on GP, which is a branch of GAs with the main
difference being that the individuals in the population
can vary in shape and size. When applied to the
derivation of QSARs, this allows models of varying
complexity to be explored. In GPQSAR, a single solution
is evolved with the balance between model complexity
and accuracy being controlled by a penalty function. The
advantage of this approach over existing approaches to
deriving QSARs is that the number of terms required
does not have to be specified. A disadvantage is that
the penalty function has to be calibrated for each data
set. A further disadvantage is that a single solution is
found, which represents one particular compromise
solution when typically a family of different compromise
solutions exists.

The second approach, MoQSAR, is based on a MOGP
and exploits the population nature of the GP to optimize
a family of solutions in parallel. It is no longer necessary
to calibrate the method nor is it necessary to specify
the number of terms required. A family of QSAR models
is obtained where each model represents a different
compromise in the objectives. Model complexity has
been measured using a number of different objectives
including the total number of terms, the number of
nonlinear terms, and a knowledge-based measure of the
chemical interpretability of the descriptors used in the
model.

The method has been applied to several different data
sets, and in each case, a variety of different models were
found. In the case of the Selwood data set, these models
include “best” models previously reported in the litera-
ture. Additional models are also found where accuracy
is traded for improved interpretability. The full range
of models can be presented to the user who is then able
to select a model that represents the best compromise
in the objectives.
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Figure 8. Correlation between the experimental and the
predicted logS of the test set of 35 structures for the Nitrogen
data set. The line represents the ideal correlation between
experimental and predicted logS.

Table 12. Statistics Are Reported for 50 Runs of MoQSAR on
the Nitrogen Data Set with Scrambled Dataa

p r2 rMAX
2 q2 qMAX

2
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4 0.699 0.191 0.676 0.140
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6 0.747 0.223 0.724 0.142
7 0.760 0.219 0.732 0.134

a The runs were designed to optimize r2 and p. r2 and q2

represent the values found for unscrambled data. rMAX
2 and qMAX

2

represent the best values of r2 and q2 found for each value of p
over 50 runs using the scrambled data.

logS ) 0.137 MDE_14 + 1.259 GEOM_3 +
0.102 SCDH_2 - 0.549 xv0 + 1.278

r2 ) 0.699; q2 ) 0.676 (12)

Table 13. Ten Runs of MoQSAR Were Carried out on the
Selwood Data Set to Evaluate the Robustness of the Approacha

p rMEAN
2 rSD

2 p rMEAN
2 rSD

2

1 0.371 0 5 0.844 0.014
2 0.639 2E-08 6 0.869 0.008
3 0.735 0.004 7 0.875 0.015
4 0.812 0.019
a The runs were designed to optimize r2 and p; hence, each run

generated seven solutions, one for each number of terms (1-7).
The column headed rMEAN

2 shows the results averaged for each
value of p. Standard deviations are shown in the column headed
rSD

2 .
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